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STSB6816 Special Test of 2022 

Mathematical Statistics and Actuarial Science; University of the Free State 

2022/06/23 

Time: 150 minutes; Marks: 40 

 

MEMORANDUM 
 

Instructions 
• Answer all questions in a single R Markdown document. Please knit to Word or PDF at the 

end and submit both the PDF/Word document and the .Rmd file for assessment, in that 
order. 

• Label questions clearly, as it is done on this question paper. 

• All results accurate to at least 1 decimal place, ensure that simulation error is small enough 
(by doing enough simulations). 

• Show all derivations, formulas, code, sources and reasoning. 

• Intervals should cover 95% probability unless stated otherwise. 

• No communication software, no devices, and no communication capable websites may be 
accessed prior to submission. You may not (nor even appear to) attempt to communicate or 
pass information to another student. 

Question 1 

Consider the Laplace density: 𝑓(𝑦|𝜇, 𝑏) =
1

2𝑏
exp (−

|𝑦−𝜇|

𝑏
) . 

1.1) Write down the log density. [ 1 ] 

𝑔 = log𝑓(𝑦|𝜇, 𝑏) = −log2 − log𝑏 −
|𝑦 − 𝜇|

𝑏
 

1.2) Derive the MDI prior. [ 2 ] 

𝐸(𝑔) = −log2 − log𝑏 −
𝐸|𝑦 − 𝜇|

𝑏
= −log2 − log𝑏 − 1 

𝜋𝑀𝐷𝐼(𝜇, 𝑏) ∝ 𝑏−1 

1.3) Derive the Jeffreys prior for 𝑏 assuming 𝜇 = 0. [ 4 ] 

∂𝑔

∂𝑏
= −

1

𝑏
+
|𝑦|

𝑏2
 

∂2𝑔

∂𝑏2
=

1

𝑏2
− 2

|𝑦|

𝑏3
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𝜋𝐽𝑒𝑓𝑓𝑟𝑒𝑦𝑠(𝑏) ∝ √
1

𝑏2
= 𝑏−1 

1.4) Now consider that you have a sample of values 𝑦1, … , 𝑦𝑛 that are explained by a single 
continuous explanatory variable 𝑥1, … , 𝑥𝑛 but with Laplace residuals. Write down the log likelihood 
and then show that the log posterior is given by the expression below. [ 3 ] 

𝜋(𝛉|𝐲, 𝐱) = −(𝑛 + 1)log𝑏 −
1

𝑏
∑|𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)|

𝑛

𝑖=1

 

1.5) What is the theoretical impact of using a Laplace distribution for the residuals instead of a 
normal distribution? [ 3 ] 

The Laplace distribution places less emphasis on large deviations since it does not square them, thus it is 
a more robust regression. [3] 

1.6) Use the code below to capture a set of data, and show that the average y value is 5.2 [ 2 ] 

d <- data.frame(x = 1:20, y = c(8.6, 5.6, 7.2, 6.9, 6.8, 5.4, 6.8, 5.9, 4.4, 5.9, 
4.8, 5.2, 3.7, 5.3, 3.4, 4, 4.2, 3.1, 3.6, 3.2)) 
mean(d$y) 

|  [1] 5.2 

Typing in code and numbers correctly [2]. 

1.7) Fit an OLS regression through the points as given. Give a summary of the parameters. [ 2 ] 

OLS <- lm(y ~ x, data = d) 
OLS |> summary() |> broom::tidy() |> kable(digits = 2) 

term estimate std.error statistic p.value 

(Intercept) 7.59 0.35 21.77 0 

x -0.23 0.03 -7.81 0 

Fitting a regression model [1], giving summary [1]. 

1.8) Fit a Bayesian linear model with Laplace errors through the points as given. Give a trace plot 
and summary of the parameters. [ 10 ] 

library(rstan) 
mycores <- 3 
options(mc.cores = mycores) 

// This Stan block defines a simple Laplace regression model, by Sean van der Merwe, 
UFS 
data { 
  int<lower=1> n;                  // number of observations 
  real y[n];                // observations 
  real x[n];                // explanatory variables 
} 
// The parameters of the model 
parameters { 
  real b0; 
  real b1; 
  real<lower=0> s;                  
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} 
model { 
  for (i in 1:n) { 
    y[i] ~ double_exponential(b0 + b1*x[i], s); 
  } 
  target += -log(s);   // joint objective prior 
} 
generated quantities { 
  vector[n] preds; 
  for (i in 1:n) { 
    preds[i] = double_exponential_rng(b0 + b1*x[i], s); 
  } 
} 

ModelFit <- sampling(LaplaceReg, list(n = nrow(d), y = d$y, x = d$x), iter = 10000, 
chains = mycores) 

ModelFit |> traceplot(pars = c('b0', 'b1', 's')) 

 

(ModelFit |> summary(pars = c('b0', 'b1', 's')))$summary |> kable(digits = 2) 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

b0 7.83 0 0.32 7.08 7.67 7.86 8.02 8.42 4160.84 1 

b1 -0.24 0 0.03 -0.29 -0.25 -0.24 -0.22 -0.18 4434.85 1 

s 0.62 0 0.15 0.39 0.51 0.60 0.70 0.98 5402.89 1 

Coding the model [4], using the prior as given [2], running the model and giving trace plot plus 
parameter summary [4]. 

1.9) Draw a single plot showing the data points and both model fits, as well as prediction intervals 
for both models. [ 10 ] 
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HINT You can use posterior mean or median estimates to produce Laplace predicted values without 
intervals. Leave the Laplace intervals for last, after you have already done the plot and some 
interpretation, as they require you to simulate new Laplace values. 

ModelFit |> extract() -> draws 

OLSpreds <- predict(OLS, newdata = d, interval = 'prediction') 
draws$preds |> apply(2, quantile, c(0.5, 0.025, 0.975)) |> t() |> 
data.frame(OLSpreds) -> allpreds 
names(allpreds) <- c('OLS fit', 'OLS Lower Limit', 'OLS Upper Limit', 'Laplace 
Median', 'Laplace Lower Limit', 'Laplace Upper Limit') 

suppressPackageStartupMessages(library(tidyverse)) 
allpreds |> data.frame() |>  
  pivot_longer(everything(), names_to = 'Line', values_to = 'Prediction') |>  
  data.frame(x = rep(d$x, each = ncol(allpreds))) -> plot_data 
plot_data |>  
  ggplot(aes(x = x, y = Prediction)) + geom_line(aes(colour = Line)) + 
geom_point(data = d, mapping = aes(x = x, y = y)) 

 

Data points [2], OLS predictions [1], OLS Intervals [1], Laplace predictions [2], Laplace intervals [4]. 

1.10) Explain, in detail, which model appears to be a better fit based on your plot. [ 3 ] 

Capturing more/less of the relevant information, width and coverage and key factors to talk about. In 
particular we note that the Laplace has smaller intervals as it is less affected by the outlying 
observations. [3]. 

 

Points total 

The points on the test add up to 40 
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