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STSB6816 Test 1 of 2022 

Mathematical Statistics and Actuarial Science; University of the Free State 

2022/04/07 

Time: 180 minutes; Marks: 50 

 

MEMORANDUM 
 

Instructions 
• Answer all questions in a single R Markdown document. Please knit to PDF or Word at the 

end and submit both the PDF/Word document and the .Rmd file for assessment, in that 
order. 

• Label questions clearly, as it is done on this question paper. 

• All results accurate to about 3 decimal places. 

• Show all derivations, formulas, code, sources and reasoning. 

• Intervals should cover 95% probability unless stated otherwise. 

• No communication software, no devices, and no communication capable websites may be 
accessed prior to submission. You may not (nor even appear to) attempt to communicate or 
pass information to another student. 

Introduction 

The data is provided on https://ufs.blackboard.com. It consists of the queueing times of 
customers at two cashiers in a small store. Your task today is to establish whether the two 
cashiers are similar in serving speed, or whether there is a meaningful difference between 
them on average. 

These times (in minutes) are assumed to follow a gamma distribution (on the basis that they are the 
sum of exponential waiting times of independent customers arriving uniformly over time). You are 
encouraged to fit gamma distributions to these times as part of this process, although other 
approaches will get partial credit. 

Question 1 

1.1) Before touching the data, derive the Jeffreys prior for the gamma distribution parameters: 
shape 𝛼 and rate 𝜆 (or scale 𝛽 if you prefer). [ 5 ] 

cat("$$\\begin{aligned} 
g&=-\\log(f(x))\\\\ 
&=-\\alpha \\log \\lambda + \\log \\Gamma(\\alpha) - (\\alpha - 1)\\log x + \\lambda 
x \\\\ 
\\frac{\\partial g}{\\partial\\alpha}&=-\\log\\lambda + \\psi(\\alpha) - \\log x\\\\ 

https://ufs.blackboard.com/
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\\frac{\\partial g}{\\partial\\lambda}&=-\\alpha\\lambda^{-1} + x\\\\ 
\\pi&=\\left|\\begin{matrix} 
\\psi'(\\alpha) & -\\lambda^{-1} \\\\ 
-\\lambda^{-1} & \\alpha\\lambda^{-2} 
\\end{matrix}\\right|^{0.5}\\\\ 
&=\\lambda^{-1}\\sqrt{\\alpha\\psi'(\\alpha)-1} 
\\end{aligned}$$") 

𝑔 = −log(𝑓(𝑥))

= −𝛼log𝜆 + log𝛤(𝛼) − (𝛼 − 1)log𝑥 + 𝜆𝑥
∂𝑔

∂𝛼
= −log𝜆 + 𝜓(𝛼) − log𝑥

∂𝑔

∂𝜆
= −𝛼𝜆−1 + 𝑥

𝜋 = |
𝜓′(𝛼) −𝜆−1

−𝜆−1 𝛼𝜆−2
|
0.5

= 𝜆−1√𝛼𝜓′(𝛼) − 1

 

Negative log density [1]. Partial derivatives [2]. Information matrix [1]. Determinant and square root [1]. 

1.2) Read in the data set and explore it visually. You could start with a histogram or density plots 
and by drawing a box plot of Times against the Cashier name. Give a very short summary of what 
you see. [ 5 ] 

"STSB6816Test1Data2022.xlsx" |> openxlsx::read.xlsx("TestData") -> d 
Cashiers <- unique(d$Cashier) 

par(mar=c(5,5,1,1)) 
d$Time |> hist(col = 'purple', main = '', xlab = 'Time', freq = FALSE) 

 

d$Time |> tapply(d$Cashier, density) -> densities 
densities |> sapply(with, x) -> x 
densities |> sapply(with, y) -> y 
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plot(range(x), range(y), type = 'n', main='', xlab = 'Time', ylab = 'Density') 
for (Cas in 1:2) { 
  lines(x[,Cas], y[,Cas], col = Cas+1, lwd = 3) 
} 
legend('topright', legend = Cashiers, col = (1:2)+1, lwd = 3) 

 

boxplot(Time ~ Cashier, data=d, cex.axis=0.5, col=c('red','blue')) 
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Load data [1], Histogram/density plot [1], Box plot [2], Discussion saying something about skewness or 
Bob seeming (not is) slower [1]. Any statement suggesting that Bob actually is slower based on this plot 
alone gets -3. 

1.3) Fit distributions (ideally gamma distributions) to the times as a whole, as well as to the times 
of each individual cashier. Give parameter estimates, with uncertainty, for your fits. For full credit 

you must use the Jeffreys prior: 𝜆−1√𝛼𝜓′(𝛼) − 1 (trace plots showing good convergence are highly 
recommended for simulation fits). [ 16 ] 

Hint: to add non-standard terms to the log posterior in Stan you can use target += and then Stan 
math functions. Stan math functions are similar to R math functions (identical in this case) including 

the trigamma() function (𝜓′( )). 

library(rstan) 
mycores <- 3 
options(mc.cores = mycores) 

// This Stan block defines a Gamma model, by Sean van der Merwe, UFS 
data { 
  int<lower=1> n;                       // number of observations 
  real<lower=0> y[n];       // observations 
} 
// The parameters of the model 
parameters { 
  real<lower=0> a;                  
  real<lower=0> l;                  
} 
model { 
  y ~ gamma(a, l); 
  target += 0.5*log(a*trigamma(a)-1) - log(l); 
} 

saveRDS(Gamma, file = 'Gamma.Rds') 

ModelFit <- vector('list', 3) 
ModelFit[[1]] <- sampling(Gamma, list(n=nrow(d), y=d$Time), iter = 10000, chains = 
mycores) 
CasRows <- which(d$Cashier == Cashiers[1]) 
ModelFit[[2]] <- sampling(Gamma, list(n=length(CasRows), y=d$Time[CasRows]), iter = 
10000, chains = mycores) 
CasRows <- which(d$Cashier == Cashiers[2]) 
ModelFit[[3]] <- sampling(Gamma, list(n=length(CasRows), y=d$Time[CasRows]), iter = 
10000, chains = mycores) 
names(ModelFit) <- c("Both", Cashiers) 

ModelFit |> lapply(\(mf) { 
  traceplot(mf) |> print() 
  summary(mf)$summary[1:2,] |> kable(digits = 3) |> print() 
}) 
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 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

a 3.586 0.009 0.487 2.70 3.248 3.566 3.906 4.598 3104.231 1.000 

l 0.694 0.002 0.102 0.51 0.623 0.690 0.761 0.907 3071.947 1.001 

 

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

a 5.262 0.018 1.019 3.435 4.549 5.189 5.911 7.429 3074.653 1 

l 1.210 0.004 0.245 0.772 1.038 1.193 1.364 1.731 3045.467 1 
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 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat 

a 3.157 0.012 0.605 2.101 2.734 3.106 3.531 4.478 2637.250 1.001 

l 0.528 0.002 0.109 0.335 0.451 0.519 0.597 0.764 2676.487 1.001 

$Both NULL 

$Alice NULL 

$Bob NULL 

Fitting gamma model to all the data [2] (other model gets 1), giving parameter estimates with 
uncertainty [2], using the Jeffreys prior as given [2], giving a good trace plot [2]. Repeating for Alice and 
Bob [(1+1+1+1)x2]. 

1.4) For each fit, regardless of distribution, describe the modelled average wait time of customers 
in general. Either use a visual tool (e.g. density/box plot) or an estimate with interval or both. [ 4 ] 
[1 bonus mark for putting the three summaries in 1 table or plot] 

ModelFit |> sapply(\(mf) { 
  mf |> extract() -> sims 
  sims$a/sims$l 
}) -> mus 
mus |> summary() |> kable(digits = 3) 

 Both Alice Bob 

 Min. :4.172 Min. :3.285 Min. :4.228 

 1st Qu.:4.986 1st Qu.:4.178 1st Qu.:5.688 

 Median :5.171 Median :4.357 Median :5.995 

 Mean :5.181 Mean :4.366 Mean :6.023 

 3rd Qu.:5.362 3rd Qu.:4.544 3rd Qu.:6.334 

 Max. :6.444 Max. :5.805 Max. :8.595 
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mus |> boxplot(ylab = 'Expected Value', col = c(3,2,4)) 

 

Using the formula for expected value of the relevant distribution to transform the parameters [2]. 
Summarising the results neatly [2]. Combined summary gets 1 bonus. 

1.5) What is the probability that one of the cashiers is more than a minute slower than the other on 
average? What does your answer imply practically? [ 4 ] 

(abs(mus[,2] - mus[,3]) > 1) |> mean() 

|  [1] 0.8859333 

max(mean((mus[,2] - mus[,3]) > 1), mean((mus[,3] - mus[,2]) > 1)) 

|  [1] 0.8859333 

Comparing the difference to 1 before calculating the probability [2]. Combining the two sides (makes no 
difference in this case but still important for appearing objective) [1]. Saying that the probability is high 
and that there is probably a difference [1]. 

1.6) Consider a random future customer joining Alice’s line. What is the probability that they will 
wait longer than 10 minutes according to your model? [ 3 ] 

AliceSims <- extract(ModelFit[[2]]) 
nsims <- nrow(mus) 
AlicePreds <- rgamma(nsims, AliceSims$a, AliceSims$l) 
mean(AlicePreds > 10) 

|  [1] 0.01126667 

Generating random future Alice customers based on the posterior simulations [2], calculating the 
probability [1]. 

1.7) Consider 10 random future customers, 6 in Alice’s line and 4 in Bob’s. What is the probability 
that the one that has to wait the longest will wait more than 10 minutes? [ 5 ] 
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Hint: You must construct sets of 10 customers by taking 6 Alice predictions and 4 Bob predictions 
and concatenating them, then check whether the longest wait time of the 10 is longer than 10 
minutes. You must do this at least 1000 times and average the results to get a probability estimate. 

BobSims <- extract(ModelFit[[3]]) 
less_sims <- round(nsims*4/6) 
BobPreds <- rgamma(less_sims, BobSims$a[1:less_sims], BobSims$l[1:less_sims]) 
WeightedPreds <- rbind(matrix(AlicePreds, 6), matrix(BobPreds, 4)) 
WeightedPreds |> apply(2, max) -> longest_wait 
mean(longest_wait > 10) 

|  [1] 0.4372 

Combining predictions in a weighted fashion [2], generating sets of 10 customers and finding the longest 
wait of each set [2], getting final probability [1]. 

1.8) Briefly explain more approaches that might allow you compare the models and possibly 
answer the core question of whether there is a meaningful difference in speed between the 
cashiers. Do not give any code or implementation, just words and references. [ 8 ] 

The approach already implemented involved separately fitting models on the two sets of data and 
calculating a probability of a difference, so no marks for mentioning that approach. 

The alternatives involve comparing the models of all the data together: one model with one set of 
parameters and one model with two sets of parameters [2]. 

In all cases we compare the predictive errors of the models and see which fits better [2], although in 
rare cases we could show that one model fits and the other does not, which is really nice when it 
happens. 

Methods of comparison include: information criteria, cross validation, Bayes factors, visual comparisons 
of predictive fit [4]. 

 

Points total 

The points on the test add up to 50 

 


