STSB6816 Test 1 of 2022
Mathematical Statistics and Actuarial Science; University of the Free State
2022/04/07
Time: 180 minutes; Marks: 50

MEMORANDUM

Instructions
· Answer all questions in a single R Markdown document. Please knit to PDF or Word at the end and submit both the PDF/Word document and the .Rmd file for assessment, in that order.
· Label questions clearly, as it is done on this question paper.
· All results accurate to about 3 decimal places.
· Show all derivations, formulas, code, sources and reasoning.
· Intervals should cover 95% probability unless stated otherwise.
· No communication software, no devices, and no communication capable websites may be accessed prior to submission. You may not (nor even appear to) attempt to communicate or pass information to another student.
Introduction
The data is provided on https://ufs.blackboard.com. It consists of the queueing times of customers at two cashiers in a small store. Your task today is to establish whether the two cashiers are similar in serving speed, or whether there is a meaningful difference between them on average.
These times (in minutes) are assumed to follow a gamma distribution (on the basis that they are the sum of exponential waiting times of independent customers arriving uniformly over time). You are encouraged to fit gamma distributions to these times as part of this process, although other approaches will get partial credit.
Question 1
1.1) Before touching the data, derive the Jeffreys prior for the gamma distribution parameters: shape  and rate  (or scale  if you prefer). [ 5 ]
cat("$$\\begin{aligned}
g&=-\\log(f(x))\\\\
&=-\\alpha \\log \\lambda + \\log \\Gamma(\\alpha) - (\\alpha - 1)\\log x + \\lambda x \\\\
\\frac{\\partial g}{\\partial\\alpha}&=-\\log\\lambda + \\psi(\\alpha) - \\log x\\\\
\\frac{\\partial g}{\\partial\\lambda}&=-\\alpha\\lambda^{-1} + x\\\\
\\pi&=\\left|\\begin{matrix}
\\psi'(\\alpha) & -\\lambda^{-1} \\\\
-\\lambda^{-1} & \\alpha\\lambda^{-2}
\\end{matrix}\\right|^{0.5}\\\\
&=\\lambda^{-1}\\sqrt{\\alpha\\psi'(\\alpha)-1}
\\end{aligned}$$")

Negative log density [1]. Partial derivatives [2]. Information matrix [1]. Determinant and square root [1].
1.2) Read in the data set and explore it visually. You could start with a histogram or density plots and by drawing a box plot of Times against the Cashier name. Give a very short summary of what you see. [ 5 ]
"STSB6816Test1Data2022.xlsx" |> openxlsx::read.xlsx("TestData") -> d
Cashiers <- unique(d$Cashier)
par(mar=c(5,5,1,1))
d$Time |> hist(col = 'purple', main = '', xlab = 'Time', freq = FALSE)
[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-5-1.emf]
d$Time |> tapply(d$Cashier, density) -> densities
densities |> sapply(with, x) -> x
densities |> sapply(with, y) -> y
plot(range(x), range(y), type = 'n', main='', xlab = 'Time', ylab = 'Density')
for (Cas in 1:2) {
  lines(x[,Cas], y[,Cas], col = Cas+1, lwd = 3)
}
legend('topright', legend = Cashiers, col = (1:2)+1, lwd = 3)
[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-5-2.emf]
boxplot(Time ~ Cashier, data=d, cex.axis=0.5, col=c('red','blue'))
[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-5-3.emf]
Load data [1], Histogram/density plot [1], Box plot [2], Discussion saying something about skewness or Bob seeming (not is) slower [1]. Any statement suggesting that Bob actually is slower based on this plot alone gets -3.
1.3) Fit distributions (ideally gamma distributions) to the times as a whole, as well as to the times of each individual cashier. Give parameter estimates, with uncertainty, for your fits. For full credit you must use the Jeffreys prior:  (trace plots showing good convergence are highly recommended for simulation fits). [ 16 ]
Hint: to add non-standard terms to the log posterior in Stan you can use target += and then Stan math functions. Stan math functions are similar to R math functions (identical in this case) including the trigamma() function .
library(rstan)
mycores <- 3
options(mc.cores = mycores)
// This Stan block defines a Gamma model, by Sean van der Merwe, UFS
data {
  int<lower=1> n;                       // number of observations
  real<lower=0> y[n];       // observations
}
// The parameters of the model
parameters {
  real<lower=0> a;                 
  real<lower=0> l;                 
}
model {
  y ~ gamma(a, l);
  target += 0.5*log(a*trigamma(a)-1) - log(l);
}
saveRDS(Gamma, file = 'Gamma.Rds')
ModelFit <- vector('list', 3)
ModelFit[[1]] <- sampling(Gamma, list(n=nrow(d), y=d$Time), iter = 10000, chains = mycores)
CasRows <- which(d$Cashier == Cashiers[1])
ModelFit[[2]] <- sampling(Gamma, list(n=length(CasRows), y=d$Time[CasRows]), iter = 10000, chains = mycores)
CasRows <- which(d$Cashier == Cashiers[2])
ModelFit[[3]] <- sampling(Gamma, list(n=length(CasRows), y=d$Time[CasRows]), iter = 10000, chains = mycores)
names(ModelFit) <- c("Both", Cashiers)
ModelFit |> lapply(\(mf) {
  traceplot(mf) |> print()
  summary(mf)$summary[1:2,] |> kable(digits = 3) |> print()
})
[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-11-1.emf]
	
	mean
	se_mean
	sd
	2.5%
	25%
	50%
	75%
	97.5%
	n_eff
	Rhat

	a
	3.586
	0.009
	0.487
	2.70
	3.248
	3.566
	3.906
	4.598
	3104.231
	1.000

	l
	0.694
	0.002
	0.102
	0.51
	0.623
	0.690
	0.761
	0.907
	3071.947
	1.001


[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-11-2.emf]
	
	mean
	se_mean
	sd
	2.5%
	25%
	50%
	75%
	97.5%
	n_eff
	Rhat

	a
	5.262
	0.018
	1.019
	3.435
	4.549
	5.189
	5.911
	7.429
	3074.653
	1

	l
	1.210
	0.004
	0.245
	0.772
	1.038
	1.193
	1.364
	1.731
	3045.467
	1


[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-11-3.emf]
	
	mean
	se_mean
	sd
	2.5%
	25%
	50%
	75%
	97.5%
	n_eff
	Rhat

	a
	3.157
	0.012
	0.605
	2.101
	2.734
	3.106
	3.531
	4.478
	2637.250
	1.001

	l
	0.528
	0.002
	0.109
	0.335
	0.451
	0.519
	0.597
	0.764
	2676.487
	1.001


$Both NULL
$Alice NULL
$Bob NULL
Fitting gamma model to all the data [2] (other model gets 1), giving parameter estimates with uncertainty [2], using the Jeffreys prior as given [2], giving a good trace plot [2]. Repeating for Alice and Bob [(1+1+1+1)x2].
1.4) For each fit, regardless of distribution, describe the modelled average wait time of customers in general. Either use a visual tool (e.g. density/box plot) or an estimate with interval or both. [ 4 ] [1 bonus mark for putting the three summaries in 1 table or plot]
ModelFit |> sapply(\(mf) {
  mf |> extract() -> sims
  sims$a/sims$l
}) -> mus
mus |> summary() |> kable(digits = 3)
	
	Both
	Alice
	Bob

	
	Min. :4.172
	Min. :3.285
	Min. :4.228

	
	1st Qu.:4.986
	1st Qu.:4.178
	1st Qu.:5.688

	
	Median :5.171
	Median :4.357
	Median :5.995

	
	Mean :5.181
	Mean :4.366
	Mean :6.023

	
	3rd Qu.:5.362
	3rd Qu.:4.544
	3rd Qu.:6.334

	
	Max. :6.444
	Max. :5.805
	Max. :8.595


mus |> boxplot(ylab = 'Expected Value', col = c(3,2,4))
[image: STSB6816Test1of2022_files/figure-docx/unnamed-chunk-13-1.emf]
Using the formula for expected value of the relevant distribution to transform the parameters [2]. Summarising the results neatly [2]. Combined summary gets 1 bonus.
1.5) What is the probability that one of the cashiers is more than a minute slower than the other on average? What does your answer imply practically? [ 4 ]
(abs(mus[,2] - mus[,3]) > 1) |> mean()
|  [1] 0.8859333
max(mean((mus[,2] - mus[,3]) > 1), mean((mus[,3] - mus[,2]) > 1))
|  [1] 0.8859333
Comparing the difference to 1 before calculating the probability [2]. Combining the two sides (makes no difference in this case but still important for appearing objective) [1]. Saying that the probability is high and that there is probably a difference [1].
1.6) Consider a random future customer joining Alice’s line. What is the probability that they will wait longer than 10 minutes according to your model? [ 3 ]
AliceSims <- extract(ModelFit[[2]])
nsims <- nrow(mus)
AlicePreds <- rgamma(nsims, AliceSims$a, AliceSims$l)
mean(AlicePreds > 10)
|  [1] 0.01126667
Generating random future Alice customers based on the posterior simulations [2], calculating the probability [1].
1.7) Consider 10 random future customers, 6 in Alice’s line and 4 in Bob’s. What is the probability that the one that has to wait the longest will wait more than 10 minutes? [ 5 ]
Hint: You must construct sets of 10 customers by taking 6 Alice predictions and 4 Bob predictions and concatenating them, then check whether the longest wait time of the 10 is longer than 10 minutes. You must do this at least 1000 times and average the results to get a probability estimate.
BobSims <- extract(ModelFit[[3]])
less_sims <- round(nsims*4/6)
BobPreds <- rgamma(less_sims, BobSims$a[1:less_sims], BobSims$l[1:less_sims])
WeightedPreds <- rbind(matrix(AlicePreds, 6), matrix(BobPreds, 4))
WeightedPreds |> apply(2, max) -> longest_wait
mean(longest_wait > 10)
|  [1] 0.4372
Combining predictions in a weighted fashion [2], generating sets of 10 customers and finding the longest wait of each set [2], getting final probability [1].
1.8) Briefly explain more approaches that might allow you compare the models and possibly answer the core question of whether there is a meaningful difference in speed between the cashiers. Do not give any code or implementation, just words and references. [ 8 ]
The approach already implemented involved separately fitting models on the two sets of data and calculating a probability of a difference, so no marks for mentioning that approach.
The alternatives involve comparing the models of all the data together: one model with one set of parameters and one model with two sets of parameters [2].
In all cases we compare the predictive errors of the models and see which fits better [2], although in rare cases we could show that one model fits and the other does not, which is really nice when it happens.
Methods of comparison include: information criteria, cross validation, Bayes factors, visual comparisons of predictive fit [4].
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