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TYD/TIME: 270 Minutes PUNTE/MARKS: 50

INSTRUCTIONS:

• Answer all questions in a single document and submit as a .pdf file.

• Label questions clearly, as it is done on this question paper.

• All calculations accurate to 4 decimal places.

• Show all formulas, code and reasoning.

• Use a significance level of 5% for all hypothesis tests.

• You may make use of any software readily available as well as pre-existing knowledge
from the internet.

• You may NOT make any attempt to communicate or share information with fellow
students.

Question 1

In a classical experiment carried out from 1918 to 1934, apple trees of different
rootstocks were compared (Andrews and Herzberg, 1985, pp. 357–360). The data for
eight trees from each of six rootstocks are available (see ‘rootstocks.csv’ on eLearn).
The variables are

y1 = trunk girth at 4 years (mm × 100),

y2 = extension growth at 4 years (m),

y3 = trunk girth at 15 years (mm × 100),

y4 = weight of tree above ground at 15 years (lb × 1000).

(a) MODEL A: Consider only variable y4. Assume each observation of this variable
follows a Gamma distribution with unknown parameters α and λ. Assign each
parameter a vague Gamma(0.001, 0.001) prior.
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i. Simulate the joint posterior of the two parameters. At least 20,000 simula-
tions in total. [7]

alldata <- read.csv(’rootstock.csv’)

y <- alldata$y4

n <- length(y)

library(R2OpenBUGS)

rootmodel <- function () {

for (i in 1:n) {

y[i] ~ dgamma(alpha ,lambda)

}

alpha ~ dgamma (0.001 ,0.001)

lambda ~ dgamma (0.001 ,0.001)

mu <- alpha/lambda

}

write.model(rootmodel ,’BUGStemp.txt’)

BUGSdata <- list(y=y,n=n)

inits <- function () {return(list(alpha=(mean(y)^2/var(y)),lambda =(mean(y)/var(y))))}

fittedrootsmodel <- bugs(BUGSdata , inits , ’BUGStemp.txt’, parameters = c(’alpha’,’

lambda ’,’mu’), n.chains=2,n.iter =22000 ,n.burnin =2000,n.thin=2, debug=TRUE)

Code " " " " " " " ".

ii. Produce a neat scatterplot of the joint distribution. Based on your inspec-
tion of the plot, explain the dependence structure (or lack thereof) between
the two parameters. [4]

plot(fittedrootsmodel$sims.list$alpha ,fittedrootsmodel$sims.list$lambda ,pch=’.’,main=

’Scatter plot of joint posterior 1ai’,xlab=’alpha’,ylab=’lambda ’)

Code " ",
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iii. Draw a histogram of the posterior distribution of the mean of y4 (µ = α
λ
)

and compare it to the observed global mean of y4 (ȳ4). [4]

ybar <- mean(y)

hist(fittedrootsmodel$sims.list$mu,main=’Histogram of mu’,xlab=’mu’)

lines(c(ybar ,ybar),c(0 ,7000),col=’blue’,lwd=3)

Code " ",
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(b) MODEL B: Again consider only variable y4. Assume each observation of
this variable follows a Gamma distribution with unknown parameters αk and
λk. These parameters should be allowed to vary between rootstocks (k =
1, . . . , 6) but remain constant within each rootstock. Further assume vague
Gamma(0.001, 0.001) priors for all 12 parameters.

i. Simulate the joint posterior of the 12 parameters. At least 20,000 simu-
lations in total. Your model must also calculate the ratios of the α’s and
λ’s to get the posterior distributions of µ1, . . . , µ6. Finally, calculate the
successive differences µ1 − µ2, µ2 − µ3, . . . , µ5 − µ6. [12]

ymat <- matrix(y,8,6)

rootmodelB <- function () {

for (j in 1:6) {

for (i in 1:8) {

ymat[i,j] ~ dgamma(alpha[j],lambda[j])

}

alpha[j] ~ dgamma (0.001 ,0.001)

lambda[j] ~ dgamma (0.001 ,0.001)

mu[j] <- alpha[j]/lambda[j]

}

for (k in 1:5) {

diffs[k] <- mu[k+1]-mu[k]

}

}

write.model(rootmodelB ,’BUGStemp.txt’)

BUGSdata <- list(ymat=ymat)

inits <- function () {return(list(alpha=( colMeans(ymat)^2/apply(ymat ,2,var)),lambda =(

colMeans(ymat)/apply(ymat ,2,var))))}

fittedrootsmodelB <- bugs(BUGSdata , inits , ’BUGStemp.txt’, parameters = c(’alpha ’,’

lambda ’,’mu’,’diffs ’), n.chains=2,n.iter =22000 ,n.burnin =2000 ,n.thin=2, debug=TRUE

)

ii. Calculate 99% intervals of these differences (µ1 − µ2, µ2 − µ3, . . . , µ5 − µ6),
then state which intervals contain 0 and what this implies. [4]

(intervals <- apply(fittedrootsmodelB$sims.list$diffs ,2,quantile ,c(0.005 ,0.995)))

Code " ",
Diffs [,1] [,2] [,3] [,4] [,5]
0.5% 0.087 -0.298 -0.748 -0.233 -0.874

99.5% 0.777 0.512 0.007 0.583 -0.117

The first and last intervals do not contain 0 ", this implies that there are significant
differences between some group means ".
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(c) MODEL COMPARISON

i. Obtain the value of DIC for both models. Compare these DIC values and
judge which model is better, then explain what this implies, with respect
to the properties of the weight of the trees of different rootstocks, in plain
language. [6]

fittedrootsmodel$DIC

fittedrootsmodelB$DIC

Values are 22.98 "and 0.8215 ", since the second model has a much smaller DIC
it is the superior model " ", the implication of this is that the data supports the
notion that the groups have different means, even accounting for the extra complexity
this brings " ".

ii. For up to 3 bonus marks, compare your judgement above with the results
of a classical ANOVA on y4.

(anova(lm(alldata$y4~alldata$Rootstock)))

ANOVA table Df SumSq MeanSq F Pr(¿F)
alldata$Rootstock 1 0.203 0.203 2.323 0.134
Residuals 46 4.013 0.087

Code ", the classical ANOVA, with it’s assumption of Normality, fails to reject the
null hypothesis that all means are equal ", it may be that the different assumption
yields a different conclusion, or perhaps the ANOVA is more conservative. Additional
testing would be required to determine the reason for the different results (any 1 of

these 3 ").

Total for Question 1: 37

Question 2

A set of lecturers assessed the presentations of a set of students (see ‘marks2.csv’
on eLearn). Not all lecturers viewed all presentations, but more importantly, lectur-
ers are not perfect assessors — they have different biases and variances. The goal
is to obtain a fair mark for every student, as well as a ranking of individual asses-
sors. Please note that the marks have already been transformed to the logistic scale
(−∞;∞).
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Consider the following model:

• Observed marks are assumed Normal with mean µij = si + lj and precision τj.

• si, i = 1, . . . , n = 15 refers to the ‘true’ mark that each student deserves.

• lj, j = 1, . . . , k = 9 refers to the bias of each lecturer. Note that l9 = −
∑8

j=1 lj
because we assume that, on average, the lecturers are unbiased.

• A priori, assume si ∼ N(1.15, 0.01), lj ∼ N(0, 0.04) and τj ∼ Exp(0.01).

(a) Implement the above model by simulating from the joint posterior of all param-
eters. [9]

y <- read.csv(’marks2.csv’,row.names =1)

n <- nrow(y)

k <- ncol(y)

library(R2OpenBUGS)

marksmodel <- function () {

for (i in 1:n) {

for (j in 1:k) {

y[i,j] ~ dnorm(mu[i,j],taou[j])

mu[i,j] <- student[i] + lecbias[j]

er[i,j] <- y[i,j]-student[i]

}

student[i] ~ dnorm (1.15 ,0.01)

}

for (j in 1:k) {

taou[j] ~ dexp (0.01)

}

for (j in 1:(k-1)) {

lecbias[j] ~ dnorm (0 ,0.04)

}

lecbias[k] <- 0-sum(lecbias [1:(k-1)])

}

write.model(marksmodel ,’BUGStemp.txt’)

BUGSdata <- list(y=as.matrix(y),n=n,k=k)

inits <- function () {return(list(student=rep(1.15,n),lecbias=rep(0,k),taou=rep(2.5,k)

,mu=matrix (1.15,n,k)))}

fittedmarksmodel <- bugs(BUGSdata , inits , ’BUGStemp.txt’, parameters = c(’student ’,’

lecbias ’,’er’), n.chains=2,n.iter =22000 ,n.burnin =2000,n.thin=2, debug=TRUE)

Code 9 marks (note that the er[i,j] line is not worth marks here as it is only necessary
for Part d, which is bonus marks).

(b) Determine the final mark to be awarded to each student by averaging over the
simulations (posterior mean) and then transforming back to the marks scale,
using the inverse logistic transform. [2]

attach.bugs(fittedmarksmodel)

finalmarks <- round(plogis(colMeans(student))*100,1)

names(finalmarks) <- rownames(y)

finalmarks

Average ", inverse logit ".
Frikkie&Christelle 79.3 Leon&Carina 86.8 Morapeli 76
Daryl 78.1 Mulanga 68.6 Lucky&Oshomah 63.4
Mariska 75.3 Hilda 63.1 Caldwell 81.5
Seun 63.4 Napo 69.8 Teboho 70.4
Janca&Ehan 84.5 Gao 83.4 Sabelo&Mpendulo 76.9
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(c) Sort the lecturers from lowest square average bias to largest square average bias. [2]

lecturers <- colnames(y)

lecturers[order(colMeans(lecbias)^2)]

Code", “Max” “Michael” “Sean” “Delson” “Morné” “Zani” “Dawie” “Andréhette”
“Martin” "

(d) For 2 bonus marks, sort the lecturers from lowest mean square error to largest
mean square error, where error refers to the difference between the observed
mark and the mark to be awarded to a student.

meanerrs <- apply(er^2,3,mean)

lecturers[order(meanerrs)]

Code ", “Max” “Sean” “Morné” “Dawie” “Andréhette” “Delson” “Michael” “Mar-
tin” “Zani” ".

Total for Question 2: 13

Question: 1 2 Total

Points: 37 13 50
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