Bayes Assignment 4 of 2025
Sean van der Merwe
2025-03-12
Activate the navigation pane (View menu) for ease of navigation through the document.
Instructions
In this assignment you will conduct a simulation study to compare two priors in terms of their performance on a particular task.
The scenario is that a set of proportions are measured and a decision must be made whether they are close enough to uniform or adhering to a beta distribution with parameter values away from 1. The procedure is that a beta distribution is fitted to the proportions, and if the posterior median estimates of the parameters fall in the region where are close to 1 then the conclusion is made that they are ‘close enough to uniform’. If you incorrectly conclude they are close enough then the loss is ; while if you incorrectly conclude they are too far away then the loss is . Correct conclusions make a profit of .
From the history, it is known that samples come from either a (uniform) distribution with probability , or a distribution with probability .
The two priors being compared are (A) the objective prior and (B) the subjective prior and .
Given the hyperparameter values next to your student number below, which prior provides the minimum risk (expected loss)? Answer this question on the basis of simulated samples.
options(scipen = 12)
library(knitr)
library(tidyverse)
library(devEMF)
opts_chunk$set(dev='emf', fig.ext='emf')
Generate samples that are different for each student
This is the code used to generate the data, for interest only.
set.seed(202503)
students <- as.character(c(2014095653,2017159092,2017418365,2018006516,2018395968,2019369780,2020231664,2021603747,2024180487,2028830517, 2021234567, 2022345678, 2023456789))
nn <- length(students)
hyper_pars <- data.frame(
 Student_num = students,
 h1 = runif(nn, 0.91, 0.97) |> round(2),
 h2 = runif(nn, 1.03, 1.11) |> round(2),
 h3 = runif(nn, 0.92, 0.97) |> round(2),
 h4 = runif(nn, 1.03, 1.09) |> round(2),
 h5 = runif(nn, 200, 400) |> ceiling(),
 h6 = runif(nn, 300, 500) |> ceiling(),
 h7 = runif(nn, 80, 160) |> ceiling(),
 h8 = runif(nn, 0.3, 0.7) |> round(2),
 h9 = runif(nn, 0.85+0.2*(seq_len(nn)%%2), 0.95+0.2*(seq_len(nn)%%2)) |> round(2),
 h10 = runif(nn, 0.8+0.3*(seq_len(nn)%%2), 0.9+0.3*(seq_len(nn)%%2)) |> round(2),
 h11 = runif(nn, 0.8, 2.2) |> round(1),
 h12 = runif(nn, 0.8, 2.2) |> round(1),
 n = runif(nn, 30, 50) |> ceiling(),
 M = (runif(nn, 10, 16) |> ceiling())*100
)
hyper_pars[,1:8] |> kable()
	Student_num
	h1
	h2
	h3
	h4
	h5
	h6
	h7

	2014095653
	0.96
	1.08
	0.96
	1.09
	315
	442
	112

	2017159092
	0.93
	1.07
	0.95
	1.06
	263
	365
	144

	2017418365
	0.95
	1.06
	0.97
	1.06
	388
	326
	151

	2018006516
	0.97
	1.07
	0.92
	1.04
	267
	382
	143

	2018395968
	0.94
	1.03
	0.96
	1.08
	236
	424
	107

	2019369780
	0.95
	1.06
	0.92
	1.04
	270
	483
	130

	2020231664
	0.93
	1.06
	0.97
	1.03
	295
	335
	104

	2021603747
	0.91
	1.03
	0.94
	1.04
	328
	431
	96

	2024180487
	0.97
	1.11
	0.94
	1.07
	324
	400
	96

	2028830517
	0.94
	1.10
	0.93
	1.05
	366
	397
	133

	2021234567
	0.94
	1.06
	0.96
	1.08
	324
	429
	152

	2022345678
	0.94
	1.07
	0.93
	1.09
	207
	314
	101

	2023456789
	0.95
	1.04
	0.93
	1.04
	398
	480
	98

hyper_pars[,c(1, 9:15)] |> kable()
	Student_num
	h8
	h9
	h10
	h11
	h12
	n
	M

	2014095653
	0.32
	1.09
	1.16
	2.0
	1.7
	50
	1300

	2017159092
	0.40
	0.91
	0.86
	1.5
	2.0
	43
	1500

	2017418365
	0.62
	1.09
	1.13
	1.8
	1.9
	36
	1500

	2018006516
	0.42
	0.92
	0.88
	2.0
	1.9
	41
	1600

	2018395968
	0.34
	1.14
	1.17
	1.9
	0.9
	41
	1500

	2019369780
	0.46
	0.86
	0.81
	1.9
	1.7
	37
	1200

	2020231664
	0.36
	1.07
	1.18
	1.9
	1.2
	37
	1300

	2021603747
	0.67
	0.88
	0.85
	0.8
	1.1
	46
	1500

	2024180487
	0.70
	1.10
	1.18
	1.0
	1.8
	49
	1300

	2028830517
	0.40
	0.88
	0.81
	1.3
	1.3
	45
	1600

	2021234567
	0.68
	1.09
	1.15
	2.1
	1.5
	45
	1100

	2022345678
	0.69
	0.89
	0.85
	1.6
	1.5
	46
	1500

	2023456789
	0.48
	1.13
	1.19
	0.9
	2.0
	44
	1600

Memorandum
student_number <- '2023456789'
s <- hyper_pars |> filter(Student_num %in% student_number)
The approach to solving such a problem is to break it into small steps. The first step is to simulate a single sample, fit the model, and calculate the observed loss. The second step is to then embed the process in a function, which can then be called repeatedly. The final step is to calculate the risks and draw a conclusion.
Single sample simulation and fit
The first step in simulating a sample is to select a ground truth or state of nature, using the given probability. Then a sample is generated given this ground truth.
is_uniform_truth <- runif(1) <= s$h8
if (is_uniform_truth) {
 x <- rbeta(s$n, 1, 1)
} else {
 x <- rbeta(sn, sh9, s$h10)
}
Now we fit the model using Stan.
library(rstan)
mycores <- 3
options(mc.cores = mycores)
First the model must be defined. Either we define two models, one for each prior, or we include a prior switching mechanism in the model.
data {
 int n; // sample size
 real x[n]; // sample
 real h11; // hyperprior value
 real h12; // hyperprior value
 int prior; // prior switch: 0 for objective or 1 for subjective
}
parameters {
 real<lower=0> a;
 real<lower=0> b;
}
model {
 x ~ beta(a, b);
 target += prior*(lognormal_lpdf(a | 0, h11) +
 lognormal_lpdf(b | 0, h12)) -
 (1-prior)*(log(a) + log(b));
}
The model is fit using each prior.
post_fit_obj <- beta_model |> sampling(
 list(n = s$n, x = x, h11 = s$h11, h12 = s$h12, prior = 0),
 chains = mycores)
post_fit_sbj <- beta_model |> sampling(
 list(n = s$n, x = x, h11 = s$h11, h12 = s$h12, prior = 1),
 chains = mycores)
From the fit we obtain the posterior median estimates and check whether they meet the given criteria. In general we would calculate the estimates from the simulations, but in this case it has already been done and we can obtain them from the model summary.
(post_fit_obj |> summary())$summary |> kable(digits = 3)
	
	mean
	se_mean
	sd
	2.5%
	25%
	50%
	75%
	97.5%
	n_eff
	Rhat

	a
	0.863
	0.005
	0.169
	0.561
	0.745
	0.853
	0.968
	1.215
	1044.087
	1.001

	b
	0.896
	0.006
	0.177
	0.585
	0.770
	0.886
	1.007
	1.286
	1035.975
	1.001

	lp__
	-0.736
	0.032
	1.058
	-3.483
	-1.099
	-0.412
	-0.001
	0.255
	1107.333
	1.001

(post_fit_sbj |> summary())$summary |> kable(digits = 3)
	
	mean
	se_mean
	sd
	2.5%
	25%
	50%
	75%
	97.5%
	n_eff
	Rhat

	a
	0.873
	0.005
	0.168
	0.577
	0.755
	0.862
	0.976
	1.231
	1190.603
	1.001

	b
	0.899
	0.005
	0.174
	0.588
	0.780
	0.888
	1.004
	1.270
	1165.133
	1.002

	lp__
	-3.173
	0.028
	1.022
	-5.982
	-3.581
	-2.847
	-2.440
	-2.187
	1331.563
	1.000

post_fit_obj_ests <- (post_fit_obj |> summary())$summary[,"50%"]
post_fit_sbj_ests <- (post_fit_sbj |> summary())$summary[,"50%"]
To check the criteria and calculate the loss we can define a function as this simplifies the code.
get_loss <- function(ests, s, is_uniform_truth) {
 inside <- (s$h1 < ests[1]) & (ests[1] < s$h2) & (s$h3 < ests[2]) & (ests[2] < s$h4)
 loss <- (inside & (!is_uniform_truth))*s$h5 + ((!inside) & is_uniform_truth)*s$h6 -
 (inside & is_uniform_truth)*s$h7 - ((!inside) & (!is_uniform_truth))*s$h7
}
loss_obj <- post_fit_obj_ests |> get_loss(s, is_uniform_truth)
loss_sbj <- post_fit_sbj_ests |> get_loss(s, is_uniform_truth)
In this case the losses are -98 and -98.
To calculate the expected losses in general, the above procedure must be repeated times.
Repetition
A function is defined to do the above steps.
simulate_losses <- function(sample_number, chains = mycores) {
 is_uniform_truth <- runif(1) <= s$h8
 if (is_uniform_truth) {
 x <- rbeta(s$n, 1, 1)
 } else {
 x <- rbeta(sn, sh9, s$h10)
 }
 post_fit_obj <- beta_model |> sampling(
 list(n = s$n, x = x, h11 = s$h11, h12 = s$h12, prior = 0),
 chains = chains, cores = chains, verbose = FALSE)
 post_fit_sbj <- beta_model |> sampling(
 list(n = s$n, x = x, h11 = s$h11, h12 = s$h12, prior = 1),
 chains = chains, cores = chains, verbose = FALSE)
 post_fit_obj_ests <- (post_fit_obj |> summary())$summary[,"50%"]
 post_fit_sbj_ests <- (post_fit_sbj |> summary())$summary[,"50%"]
 loss_obj <- post_fit_obj_ests |> get_loss(s, is_uniform_truth)
 loss_sbj <- post_fit_sbj_ests |> get_loss(s, is_uniform_truth)
 data.frame(Smpl_Num = sample_number,
 Objective_Loss = loss_obj,
 Subjective_Loss = loss_sbj)
}
The function is run repeatedly and the results combined.
We first do a test run to check the expected run time though.
system.time({
 test_df <- seq_len(5) |> lapply(simulate_losses) |> bind_rows()
})
 user system elapsed
 3.60 4.09 51.55
We note that the process is slow and inefficient due to wasting a lot of time creating and closing child R processes. To speed it up we can reduce the number of chains to 1. This is only an option if we are certain the simulation process is running reliably (must do extensive checks, like seeing that the Rhat values are always close to 1).
system.time({
 test_df <- seq_len(10) |> lapply(simulate_losses, 1) |> bind_rows()
})
Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
Running the chains for more iterations may help. See
https://mc-stan.org/misc/warnings.html#tail-ess
Another option for gaining speed is to run the processes in parallel.
library(parallel)
cl <- makeCluster(mycores)
cl |> clusterEvalQ(library(rstan)) |> invisible()
cl |> clusterExport(c('s', 'get_loss', 'beta_model')) |> invisible()
results_df <- cl |> parLapplyLB(seq_len(s$M), simulate_losses, chains = 1) |> bind_rows()
cl |> stopCluster()
Now we can calculate the expected losses by averaging over the simulations.
Objective_Prior_Risk <- mean(results_df$Objective_Loss)
Subjective_Prior_Risk <- mean(results_df$Subjective_Loss)
In this case the risks are 176.6 for the objective prior and 176.5 for the subjective prior.
Page 2 of 2

