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Bayes Assignment 3 of 2025 

Sean van der Merwe 

2025-02-26 

Activate the navigation pane (View menu) for ease of navigation through the document. 

Instructions 

The dataset is the 100 AI Companies of 2024 dataset from Kaggle. It is provided on the learning 
management system for convenience. The last 3 columns are the most interesting and what you 
will focus on. 

Note that the data is raw, and slightly corrupted. You must first clean up the data and transform the 
variables. All such steps must be done using R code. You may not make any alterations to the data 
set. Your code must run correctly if someone downloads the data from the source again. For 
example, there are scores that Excel converted to dates at some point, transform them back 
intelligently with code. 

Goal: To implement a robust Bayesian regression model on a dataset to test for basic trends and 
make a prediction with uncertainty. 

After data cleaning, drop the two companies with missing scores. Then drop the company that 
corresponds to your position on the class list, leaving 97 companies. 

Explain, based on statistics, whether you think the variables are related (before or after 
transformations). For the company that corresponds to your position on the class list, predict their 
revenue distribution for 2025 (one year older) assuming that their Glassdoor score drops by 0.5/5. 

Your marks will be based how well you explain your approach and how sensible your reasoning is 
(all your steps, and especially your predicted distribution, must make sense given the constraints 
of the data). 

Also, consider using transformed variables in your regressions, such as log annual revenue and log 
age, instead of the raw values. 

For this assignment, submit Word, PDF, and Rmd/qmd files in one submission on the learning 
management system, in that order. 

Memorandum 

First the student must identify their position on the class list. 

st <- 20 

options(scipen = 12) 
library(knitr) 
library(tidyverse) 
library(devEMF) 
opts_chunk$set(dev='emf', fig.ext='emf') 

https://www.kaggle.com/datasets/raniritu/ai-companies
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Data cleaning 

The data is read in unaltered. 

d <- read.csv('Ai_companies.csv') 

The key variables are transformed. 

d$Glassdoor.Score[d$Glassdoor.Score == "5-Apr"] <- "4.0/5" 
d$Score <- d$Glassdoor.Score |> substr(1, 3) |> as.numeric() 
get_revenue <- \(r) { 
  revenue_split <- r |> str_split_fixed("\\s", 2) 
  revenue_raw <- revenue_split[,1] |> parse_number() 
  ifelse(revenue_split[,2] |> startsWith("m"), revenue_raw*1000000, 
revenue_raw*1000000000) 
} 
d$Revenue <- get_revenue(d$Annual.Revenue)  
d$Log_Revenue <- d$Revenue |> log() 
d$Age <- 2025 - d$Founded 
d$Log_Age <- d$Age |> log() 

Problem rows are removed. Target row is separated and adjusted as requested. 

d <- d |> subset(!is.na(Score)) 
d_target <- d[st, ] 
d <- d[-st, ] 

d_target <- d_target |> mutate( 
  Age = Age + 1, 
  Log_Age = log(Age), 
  Score = Score - 0.5 
) 

Data exploration 

The data is explored visually to check for further anomalies and intricacies. 

d |> ggplot(aes(x = Log_Age, y = Log_Revenue)) + 
  geom_point(aes(colour = Score)) + theme_bw() +  
  geom_smooth(method = 'lm', formula = 'y~x') 
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Let us highlight the youngest and oldest companies as they might be influential observations. 

rbind(d[which.min(d$Log_Age),], d[which.max(d$Log_Age),]) |>  
  select(1:6) |> kable() 

 Compa
ny.Nam
e 

Description Headquarters Fou
nde

d 

Annual.R
evenue 

Glassdoo
r.Score 

6
1 

GE 
Vernov
a 

Best for Wind Turbine Model Cambridge, 
Massachusets 

202
2 

$68 
billion 

3.8/5 

6
2 

Siemen
s 

Best for Industrial Automation and 
Digitalization 

Munich, 
Germany 

184
7 

$83.65 
billion 

4.2/5 

Correlation 

It is interesting to consider the correlations between the variables before doing regression, at least 
in a data science setting where prediction is the focus. Note that deciding on the model based on 
the correlations can result in spurious (false positive) results and should be avoided unless you 
have already split the data and are only exploring the training portion. 

Never attempt to test a model using the same data that you use to build the model. 

Calculating correlations in R is straightforward. 

d |> select(Log_Revenue, Log_Age, Score) |> cor() 

            Log_Revenue    Log_Age      Score 
Log_Revenue  1.00000000 0.51678451 0.03526887 
Log_Age      0.51678451 1.00000000 0.07942302 
Score        0.03526887 0.07942302 1.00000000 
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But testing the correlations properly requires additional calculations, and illustrating them neatly 
requires a package such as corrplot. 

pvalfunc <- function(sims, target = 0) { 2*min(mean(sims < target), mean(sims > 
target)) } 
corrplot_exact <- function(num_data_matrix, crosssize = 1.8, textsize = 0.9) { 
  rho_post_sim <- function(r, n, n_sims = 10000) { 
    y <- r*sqrt(rchisq(n_sims, n-2)/rchisq(n_sims, n-1)/(1-(r^2))) -  
      rnorm(n_sims)/sqrt(rchisq(n_sims, n-1)) 
    y/sqrt(y^2 + 1) 
  } 
  if (any(class(num_data_matrix) %in% "data.frame")) { 
    num_data_matrix <- as.matrix(num_data_matrix) 
  } 
  corrmat <- cor(num_data_matrix, use="pairwise.complete.obs") 
  rownames(corrmat) <- colnames(corrmat) <- colnames(num_data_matrix) 
  nc <- ncol(num_data_matrix) 
  p_values <- matrix(0, nc, nc) 
  rownames(p_values) <- colnames(p_values) <- colnames(corrmat) 
  seq_len(nc-1) |> sapply(\(i) { 
    seq((i+1), nc) |> sapply(\(j) { 
      n <- sum(!(is.na(num_data_matrix[,i]) | is.na(num_data_matrix[,j]))) 
      p_values[i, j] <<- rho_post_sim(corrmat[i, j], n) |> pvalfunc() 
    }) 
  }) 
  pmat <- p_values + t(p_values) + diag(rep(1, nc)) 
  corrplot::corrplot(corrmat, method = 'color', p.mat = pmat, insig = 'pch',  
                     pch.cex = crosssize, tl.cex = textsize, tl.col='black') 
  list(correlations = corrmat, p_values = pmat) |> invisible() 
} 

In the diagram below the crosses indicate insignificant correlations (no evidence of deviation from 
the null hypothesis). However, the significance level has not been adjusted for multiple testing. 

d |> select(Log_Revenue, Log_Age, Score) |> corrplot_exact() 
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We note that only the relationship between log revenue and log age appears significant in a 
univariate linear sense. 

That said, we were asked to incorporate the score into our predictions, so we will include Score in 
the models, but not any interactions in this case (to avoid further over-fitting). 

Ordinary regression 

As a starting point for regression we implement ordinary least squares regression. 

Ordinary regression is one of very few model types for which prediction intervals are directly 
available in R. 

lm1 <- lm(Log_Revenue ~ Log_Age + Score, data = d) 
lm1 |> summary() 

 
Call: 
lm(formula = Log_Revenue ~ Log_Age + Score, data = d) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.1867 -1.8946 -0.0484  1.2966  9.2275  
 
Coefficients: 
            Estimate Std. Error t value     Pr(>|t|)     
(Intercept) 13.41038    2.36502   5.670 0.0000001562 *** 
Log_Age      2.22517    0.38106   5.839 0.0000000745 *** 
Score       -0.03676    0.56021  -0.066        0.948     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Residual standard error: 2.404 on 94 degrees of freedom 
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Multiple R-squared:  0.2671,    Adjusted R-squared:  0.2515  
F-statistic: 17.13 on 2 and 94 DF,  p-value: 0.0000004541 

lm1 |> predict(newdata = d_target, interval = 'prediction') 

        fit      lwr     upr 
21 20.36077 15.50393 25.2176 

Robust variant 

Implementing robust regression is a good sensitivity analysis. By checking whether the 
relationships change we can assess the stability of our model. 

lm2 <- MASS::rlm(Log_Revenue ~ Log_Age + Score, data = d) 
lm2 |> summary() 

 
Call: rlm(formula = Log_Revenue ~ Log_Age + Score, data = d) 
Residuals: 
     Min       1Q   Median       3Q      Max  
-4.19279 -1.67837  0.02641  1.47898  9.63170  
 
Coefficients: 
            Value   Std. Error t value 
(Intercept) 12.8898  2.2107     5.8305 
Log_Age      2.3801  0.3562     6.6818 
Score       -0.0509  0.5237    -0.0972 
 
Residual standard error: 2.397 on 94 degrees of freedom 

lm2 |> predict(newdata = d_target, interval = 'prediction') 

Warning in predict.lm(lm2, newdata = d_target, interval = "prediction", : Assuming 
constant prediction variance even though model fit is weighted 

        fit      lwr      upr 
21 20.28579 15.50606 25.06551 

The robust fit is fairly similar, but we receive a warning that additional assumptions are made when 
attempting to create a prediction interval. 

Bayesian regression 

Now we do the same regression using a Bayesian simulation approach. The Bayesian regression 
results should be roughly in line with the ordinary results, but with added flexibility. 

library(rstanarm) 
mycores <- 3 
options(mc.cores = mycores) 

lm3 <- stan_glm(Log_Revenue ~ Log_Age + Score, data = d) 
lm3 |> summary(digits = 2) 

 
Model Info: 
 function:     stan_glm 
 family:       gaussian [identity] 
 formula:      Log_Revenue ~ Log_Age + Score 
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 algorithm:    sampling 
 sample:       4000 (posterior sample size) 
 priors:       see help('prior_summary') 
 observations: 97 
 predictors:   3 
 
Estimates: 
              mean   sd    10%   50%   90% 
(Intercept) 13.44   2.38 10.39 13.42 16.49 
Log_Age      2.23   0.38  1.74  2.23  2.71 
Score       -0.05   0.57 -0.78 -0.04  0.68 
sigma        2.42   0.18  2.20  2.41  2.65 
 
Fit Diagnostics: 
           mean   sd    10%   50%   90% 
mean_PPD 19.44   0.35 18.99 19.45 19.89 
 
The mean_ppd is the sample average posterior predictive distribution of the outcome 
variable (for details see help('summary.stanreg')). 
 
MCMC diagnostics 
              mcse Rhat n_eff 
(Intercept)   0.03 1.00 5138  
Log_Age       0.01 1.00 4705  
Score         0.01 1.00 4722  
sigma         0.00 1.00 4768  
mean_PPD      0.01 1.00 4511  
log-posterior 0.04 1.01 1580  
 
For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of 
effective sample size, and Rhat is the potential scale reduction factor on split 
chains (at convergence Rhat=1). 

lm4 <- stan_lm(Log_Revenue ~ Log_Age + Score, data = d,  
               prior = R2(summary(lm1)$r.squared, what = 'mean')) 

Warning: There were 39 divergent transitions after warmup. See 
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup 
to find out why this is a problem and how to eliminate them. 

Warning: Examine the pairs() plot to diagnose sampling problems 

lm4 |> summary(digits = 2) 

 
Model Info: 
 function:     stan_lm 
 family:       gaussian [identity] 
 formula:      Log_Revenue ~ Log_Age + Score 
 algorithm:    sampling 
 sample:       4000 (posterior sample size) 
 priors:       see help('prior_summary') 
 observations: 97 
 predictors:   3 
 
Estimates: 
                mean   sd    10%   50%   90% 
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(Intercept)   13.70   2.34 10.68 13.75 16.67 
Log_Age        2.11   0.36  1.64  2.11  2.58 
Score         -0.03   0.56 -0.73 -0.04  0.70 
sigma          2.42   0.18  2.21  2.41  2.65 
log-fit_ratio  0.00   0.07 -0.09  0.00  0.09 
R2             0.25   0.07  0.16  0.25  0.33 
 
Fit Diagnostics: 
           mean   sd    10%   50%   90% 
mean_PPD 19.45   0.35 19.00 19.45 19.89 
 
The mean_ppd is the sample average posterior predictive distribution of the outcome 
variable (for details see help('summary.stanreg')). 
 
MCMC diagnostics 
              mcse Rhat n_eff 
(Intercept)   0.07 1.00 1153  
Log_Age       0.01 1.00 1602  
Score         0.02 1.00 1301  
sigma         0.00 1.00 2557  
log-fit_ratio 0.00 1.00 2179  
R2            0.00 1.00 1703  
mean_PPD      0.01 1.00 4162  
log-posterior 0.06 1.01  952  
 
For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of 
effective sample size, and Rhat is the potential scale reduction factor on split 
chains (at convergence Rhat=1). 

Robust Bayesian regression with t-residuals 

The brms package allows for a lot more distributions to be used, including Student-t. This has the 
effect of downweighting extreme residuals automatically, while maintaining accurate prediction 
intervals. 

library(brms) 

Warning: package 'brms' was built under R version 4.4.2 

Loading 'brms' package (version 2.22.0). Useful instructions 
can be found by typing help('brms'). A more detailed introduction 
to the package is available through vignette('brms_overview'). 

 
Attaching package: 'brms' 

The following objects are masked from 'package:rstanarm': 
 
    dirichlet, exponential, get_y, lasso, ngrps 

The following object is masked from 'package:stats': 
 
    ar 

lm5 <- brm(Log_Revenue ~ Log_Age + Score, data = d, family = 'student') 

Compiling Stan program... 
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Start sampling 

lm5 |> summary() 

 Family: student  
  Links: mu = identity; sigma = identity; nu = identity  
Formula: Log_Revenue ~ Log_Age + Score  
   Data: d (Number of observations: 97)  
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 
         total post-warmup draws = 4000 
 
Regression Coefficients: 
          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept    12.98      2.26     8.54    17.28 1.00     4864     2843 
Log_Age       2.37      0.38     1.62     3.10 1.00     4839     2812 
Score        -0.06      0.53    -1.07     1.01 1.00     4662     2918 
 
Further Distributional Parameters: 
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sigma     2.15      0.22     1.73     2.59 1.00     2936     2528 
nu       15.46     10.65     3.93    44.77 1.00     3544     2947 
 
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS 
and Tail_ESS are effective sample size measures, and Rhat is the potential 
scale reduction factor on split chains (at convergence, Rhat = 1). 

Prediction 

As a last step, we will simulate the posterior predictive distribution of the final regression fit for the 
target observation. 

post_sims <- lm5 |> as.data.frame() 
new_data <- model.matrix(Log_Revenue ~ Log_Age + Score, data = d_target) 
preds <- as.matrix(post_sims[,1:3]) %*% t(new_data) +  
          rt(nrow(post_sims), post_sims$nu) * post_sims$sigma 

First we give the predictive distribution on the log scale and see whether it agrees with the previous 
results. 

preds |> ggplot(aes(x = `21`)) + geom_density(linewidth = 2) + theme_bw() 
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preds |> quantile(c(0.025, 0.975)) 

    2.5%    97.5%  
15.55410 25.01376  

Calculating the shortest interval might be superior to the symmetric interval. 

shortestinterval <- function(postsims, width=0.95) { # Coded by Sean van der Merwe, 
UFS 
  sort(postsims) -> sorted.postsims 
  round(length(postsims)*width) -> gap 
  which.min(diff(sorted.postsims, gap)) -> pos 
  sorted.postsims[c(pos, pos + gap)] } 
 
preds |> shortestinterval() 

[1] 15.46477 24.92022 

Then we give the distribution and interval on the original scale. 

preds |> exp() |> ggplot(aes(x = `21`)) + geom_density(linewidth = 2) + theme_bw() 
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preds |> exp() |> quantile(c(0.025, 0.975)) 

       2.5%       97.5%  
    5689290 73002441224  

preds |> exp() |> shortestinterval() 

[1]        2614.926 32311459824.830 

While it might seem useful to report on the original scale, and it usually is, in this case the results 
are completely useless. 
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